REGIOSPECIFIC SYNTHESIS OF $\alpha-KETOACETALS$ BY REARRANGEMENT OF $\alpha-BROMO-\alpha-FLUOROKETONES$

Norbert De Kimpe, *1 Roland Verhé, Laurent De Buyck and N. Schamp Laboratory of Organic Chemistry, Faculty of Agricultural Sciences State University of Gent, Coupure 533, B-9000 Gent, Belgium

Abstract : α -Ketoacetals, derived from alkylaryl- α -diones and with acetalized benzoyl moiety, were synthesized by alkoxide induced rearrangement of α -bromo- α -fluoroalkylarylketones.

Protection of the carbonyl group as an acetal is a frequently encountered process in preparative organic chemistry, especially when multi-step syntheses are involved. Selective monoacetalization of unsymmetrical α -diones may be of considerable value. Several, methods exist for the synthesis of α -ketoacetals, among others direct acetalization of α -diones, and of organometallic reagents on α , α -dialkoxy-esters or -amides, and oxidation of α -sulfenylated ketones with methanolic thallium (III) nitrate or oxidation of α -hydroxyacetals. Additionally, α -ketoacetals were synthesized via dichloromethylketimines, rearrangement of α , α -dihaloketones, via α -acetoxy- α -sulfenylated ketones, or through metallation of imino derivatives of pyruvic aldehyde dimethyl acetal.

Connected with our studies in the field of the rearrangements of α,α -di-haloalkylarylketones, ⁸ we required a synthesis of 1,1-dialkoxy-1-aryl-2-alkanones <u>5</u>. Acetalization of alkylaryl- α -diones (HCl/CH₃OH) is not applicable in this case since the more reactive acyl moiety is initially acetalized, but the product rapidly isomerizes to its isomeric α -ketoacetal under the acidic reaction conditions used, finally resulting in a mixture of both α -ketoacetals. While α,α -dichloroalkylarylketones underwent an alkoxide-induced rearrangement into isomeric α,α -dialkoxyketones, ⁸ the reaction of α -bromo- α -fluoroalkylarylketones <u>4</u> with alkoxides in alcoholic medium exclusively produced 1,1-di-alkoxy-1-aryl-2-alkanones 5.

The starting materials $\underline{4}$ were synthesized from alkylarylketones $\underline{1}$ via α -bromoketones $\underline{2}$ and α -fluoroketones $\underline{3}$. The latter were prepared by halide exchange with dry potassium fluoride in dimethylformamide. Several methods exist for the synthesis of α -fluoroketones 11 but our procedure using KF/DMF reagent seemed a valuable reaction as isolated yields (distillation) varied from 60 to 75 %. The bromination of α -fluoroketones $\underline{3}$ into $\underline{4}$ was affected by NBS/BPO/CC1 $_{\underline{4}}$ under UV-irradiation and isolated yields (distillation) of 72-86 % were obtained. The rearrangement of α -bromo- α -fluoroketones $\underline{4}$ with sodium alkoxides (1N; 3 equivalents; RT 1-2 hrs) gave α -ketoacetals $\underline{5}$ as the sole products but substantial losses due to decomposition were noticed during distillation. The results of the synthesis of α -ketoacetals $\underline{5}$ are compiled in the Table.

The four-step-sequence starting from alkylarylketones $\underline{1}$ and leading to α, α -dialkoxy- α -arylketones $\underline{5}$ represents an elegant route to regiospecifically acetalized α -diones. It is not necessary to isolate intermediate compounds $\underline{2}$, $\underline{3}$ or $\underline{4}$. As an example, starting from propiophenone (0.2 mole scale) there was obtained a 62 % overall yield of 1,1-diethoxy-1-phenyl-2-propanone $\underline{5b}$ (R=Me; R'=H; R"=Et).

Similar to the rearrangement of α,α -dihaloaldehydes¹² and α,α -dichloroal-kylarylketones,⁸ the mechanism proceeds via the intermediacy of α -fluoro- α '-alkoxyepoxides $\underline{6}$ formed by nucleophilic attack of the alkoxide anion at the carbonyl group of $\underline{4}$ and subsequent intramolecular bromide anion displacement. The highly reactive α -fluoroepoxides $\underline{6}$ rearranged spontaneously to 1-alkoxy-1-aryl-1-fluoro-2-alkanones $\underline{7}$, a phenomenon which is well-known in the α -haloepoxide

	R	R'	R"	b.p.	yield ^b
<u>5a</u>	Me	Н	Me	123-125°/11 mmHg	75 %
<u>5b</u>	Me	H	Et	124-132°/16 mmHc	y 69 %
<u>5b</u>	Me	H	Et	78- 83°/0.01 mmHg	7 62 % [℃]
<u>5c</u>	Me	Н	<u>n-Pr</u>	80-81°/0.1 mmHq	y 71 %
<u>5d</u>	Me	H	<u>ı-Pr</u>	75- 80°/0.15 mmHg	; 70 %
<u>5e</u>	Me	<u>m</u> -Br	Et	105-111°/0.01 mmHg	g 57 % −
<u>5f</u>	Me	<u>m</u> -Br	<u>n</u> -Pr	141-144°/0.01 mmHg	g 51 %
<u>5g</u>	Et	H	Me	73- 80°/0.2 mmHg	y 70 %
<u>5h</u>	Et	Н	Et	80-84°/0.1 mmHg	72 %
<u>51</u>	<u>n</u> -Pr	Н	Ме	78- 80°/0.5 mmHg	76 %

TABLE . Synthesis of 1,1-Dialkoxy-1-aryl-2-alkanones 5^a

- a Compounds 5 gave satisfactory combustion data and were fully characterized by NMR, IR and MS data.
- b Isolated yields obtained starting from α -bromo- α -fluoroketones $\underline{4}$, except otherwise stated.
- c Yield starting from propiophenone according to the four-step sequence, without isolation of any intermediate.

chemistry. Finally, the transient α -alkoxy- α -fluoroketones $\underline{7}$ were converted exclusively into the title compounds 5 by the alkoxide. In the case of α , α -di-

chloroalkylarylketones, the reaction proceeded in similar way to an α -alkoxy- α -chloroketone (analogous to 7), but the latter intermediate suffered also carbonyl addition and subsequent epoxide formation, thereby generating two isomeric α -ketoacetals. We are currently investigating in more detail the reactive behavior of α, α -dihaloalkylarylketones towards alkoxides. In particular, the influence of various reaction conditions on the reaction pathways is studied and will be reported in a forthcoming paper. α -Ketoacetals 5 can also be used as substrates for the synthesis of mixed acetals. The procedure involves conversion of 5 into α -alkoxy- α -chloroketone 8 with phosphorus pentachloride and subsequent treatment of 8 with an alcohol in dichloromethane in the presence of triethylamine. As an example, 1,1-diethoxy-1-pheny1-2-propanone 5b was converted

into 1-ethoxy-1-isopropoxy-2-propanone $\underline{9}$ (R=Me; R'=H; R"=Et; R''' = $\underline{1}$ -Pr) in 72 % yield (b.p. 65-68°/0.01 mmHg).

References

- N. De Kimpe: "Aangesteld Navorser" of the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek".
- K. Schank: Liebigs Ann. Chem. <u>716</u>, 87 (1968); K. Schank, A. Weber: Chem. Ber. <u>105</u>, 2188 (1972); J. Van Torrey, J. A. Kuck, R. C. Elderfield: J. Org. Chem. <u>6</u>, 289 (1941); L. Brodsky, W. C. Agosta: J. Org. Chem. <u>39</u>, 2928 (1974)
- P. Seifert, E. Vogel, A. Rossi, H. Schinz: Helv. Chim. Acta 33, 725 (1950);
 A. Humphrey, J. L. Herrmann, R. H. Schlessinger: Chem. Commun. 1244 (1971); F. Huet, M. Pellet, J. M. Conia: Tetrahedron Letters 3579 (1976).
- 4. J. B. Wright: J. Am. Chem. Soc. 77, 4883 (1955).
- 5. Y. Nagao, M. Ochiai, K. Kaneko, A. Maeda, K. Watanabe, E. Fujita: Tetrahedron Letters 1345 (1977); Y. Nagao, K. Kaneko, K. Kawabata, E. Fujita: Tetrahedron Letters 5021 (1978).
- 6. C. Kowalski, X. Creary, A. Rollin, M. Burke : J. Org. Chem. 43, 2601 (1978).
- 7. N. De Kimpe, N. Schamp : Bull. Soc. Chim. Belg. 83, 507 (1974).
- 8. N. De Kimpe, R. Verhé, L. De Buyck, N. Schamp: J. Org. Chem. 43, 2933 (1978) and references cited therein.
- 9. B. M. Trost, G. S. Massiot : J. Am. Chem. Soc. 99, 4405 (1977).
- 10. T. Cuvigny, H. Normant: Synthesis 198 (1977) and references cited therein.
- 11. For some leading references concerning the synthesis of α-fluoroketones, see for instance: P. Tannhauser, R. J. Pratt, E. V. Jensen: J. Am. Chem. Soc. 78, 2658 (1956); T. E. Gough, W. S. Lin, R. G. Woolford: Can. J. Chem. 45, 2529 (1967); J. Cantacuzène, D. Ricard: Bull. Soc. Chim. Fr. 1587 (1967); D. P. Shirokov, T. V. Smirnova, A. N. Litvinova: Zh. Vses. Khim. Obshchest 14, 234 (1969), Chem. Abstr. 71, 49463 (1969); E. Elkik, H. Assadi-Far: Bull. Soc. Chim. Fr. 991 (1970); A. Fry, Y. Migron: Tetrahedron Letters 3357 (1979); S. Rozen, Y. Menahem: Tetrahedron Letters 725 (1979); G. A. Olah, J. T. Welch, Y. D. Vankar, M. Nojima, I. Kerrekes, J. A. Olah: J. Org. Chem. 44, 3872 (1979).
- 12. A. Fougerousse, J. J. Riehl: Tetrahedron Letters 3593 (1973).
- 13. R. N. McDonald in "Mechanisms of Molecular Migrations", Vol. 3, Ed. B.S. Thyagarajan, p. 67, Wiley-Interscience (1971).

(Received in UK 26 March 1980)